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tion, such as particle size, strain, dislocation density 
etc. (Mitra & Chattopadhyay, 1972), but as these 
samples are well annealed, it is evident that they are 
free of all these defects. Thus this change of Debye 
characteristic temperature must be due to a change in 
local ordering. Fig. 3 shows the variation of Debye 
characteristic temperature with the ordering as cal- 
culated from equation (5). This graph was drawn after 
the c o n s t a n t  O2BMAB had been calculated .from the 
known value of 2 OAB(pq)MAB(pq) at a heat-treatment 
temperature of 400°C when s can safely be taken to 
be zero, i.e. the alloy can be considered to be fully 
disordered. Thus, by determining the Debye charac- 
teristic temperatures of the samples quenched from 
different temperatures, the corresponding ordering par- 
ameter s can be found from the graph. The plot of 
ordering parameter s against temperature is shown in 
Fig. 4 from which it can be observed that the ordering 
decreases, as expected, with increase of temperature. 

Shri A. K. Chaudhuri is indebted to the Council of 
Scientific and Industrial Research, New Delhi, for 
financial help. 
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A New Scheme for Seminvariant Tables in All Space Groups 

BY C. GIACOVAZZO 

Istituto di Mineralogia, Universitgl di Bari, Italy 

(Received 12 January 1973; accepted 16 July 1973) 

A new scheme is proposed to make the Hauptman-Karle Tables on structure seminvariants conform 
with international notation. An alternative derivation of the Tables for conventionally centred cells 
is presented. 

The fundamental papers of Hauptman & Karle (1953, 
1956, 1959; Karle & Hauptman, 1961) have excellently 
solved the problem of choosing an origin by specifying 
the values of an appropriate set of phases, Four 
tables, containing among other things the permissible 
origins and seminvariant moduli, have been presented 
in these papers; subsequently they were slightly modi- 
fied (Karle, 1970). 

Because of the considerable increase in the use of 
direct methods, these tables could be usefully issued in 
the new International Tables for X-ray Crystallography; 
nevertheless some modifications could be made for two 
reasons: 

(a) to simplify their use, by a suitable notation 
~imilar to other crystallographic notations, 

(b) to allow, in space groups with conventional 
centred cells also, the automatic search for permissible 
origins and seminvariant reflexions by the use of 
symmetry transformations (Hall, 1970; Gramaccioli & 
Zechmeister, 1972). 

To pursue these two aims, some new definitions are 
necessary. 

(1) Permissible origins: Hauptman & Karle (here 
H-K)  define the permissible origins for primitive 
centrosymmetric space groups to be the eight points 

e,,e2,ea; ei=O or ½, i=  1,2,3. (1) 

For the primitive non-centrosymmetric space groups 
the permissible origins are defined to be those points 
which are equivalent to at least one of the eight points 



C. G I A C O V A Z Z O  391 

(1). The unsuitability of this definition (particularly in 
non-centrosymmetric groups) for practical structure 
determination suggests a new definition; thus: 

"permissible origins are the points which, taken as 
origins, retain the same functional form of the 
structure factor. They are related each other by the 
'permissible translations' " 

(2) Permissible translations: In the primitive space 
groups point symmetry defines possible translations. 

It is well known that in a primitive space group of 
order m, a general space-group symmetry operation 

rj~ = R~rj + "Is 

is modified, by a origin translation X,, to 

rj~ = R;rj + T;, 
where 

a~= R~ T~ = T~ + (R~- I)Xp. (2) 

Hence Xp is a permissible origin translation when 

(R~- I )Xp=V for s = l , 2 , . . . , m  (3) 

where V is a vector with arbitrary integer components. 
In centred space group3 the permissible translations 

are not determined exclusively by the point symmetry. 
In the H - K  (1959, 1961) papers the centred rotation 
matrices R~ are tranfformed into primitive rotation 

matrices R,  before equation (3) can be used. In these 
papers the primitive rotation matrices R, are tabulated 
for space groups with conventionally centred cells. 

In contrast with the H - K  derivation, the permissible 
translations can be specified for centred space groups 
without transforming them to appropriate primitive 
cells (this is very convenient in crystallographic com- 
puting). 

Indeed, if By = (Blv, B2v, B2v) is a translation vector 
1 1 of the centred cell [(~-,~,0) for C cells, (½,½,½) for 1 

cells, etc.], from equations (2) and (3) we can deduce 
that a permissible translation X, must satisfy the equa- 
tions 

(R~-I )Xp=V+aB~ s = l , 2 , . . . , m ;  a = 0 , 1 .  (4) 

For example, one can verify that condition (4) is satis- 
fied, in the space group F222, by the points 

(0,0,0); (½,½,0); (0,½,½); (½,0,½); 
(¼,¼,¼); (:},¼,¼); (¼,k,k); (¼,¼,¼); 

3 3 3 r l  1 3 ~ .  3 1 . (~,~,4)', ,4,4,4, ,  (~,¼,~), (¼ ,L¼);  
(½,  O, O) * /'1 1 "1"~. , ~ , ~ , ~ 2 ,  (o ,½ ,o ) ;  ( o , o , ½ ) .  

The third row of Tables 3 and 4 can be deduced directly 
from equ3tion (4). We write in this row only the per- 
missible translations not related by a combination of 
translation vectors: in the example of the F222 group, 

(0,0,0)" r! J_ !a. , ~ 2 , 2 , 2 , ,  (¼,¼,¼); (k,¼,~). 

Table 1. Permissible translations, moduli and semhwariant phases for  the primitive centrosymmetric space groups 

H-K groups (h,k,l)P(2,2.2) (h+k,1)P(2,2) (I)P(2) (h+k+l)P(2) 

Space groups 

Permissible trans- 
lations of the 
origin 

P-I Pmna 
P2/m Pcca 
P2x/m Pbam 
P2/c Pccn 
P21/c Pbcm 
Pmmm Pnnm 
Pnnn Pmmn 
Pccm Pbcn 
Pban Pbca 
Pmma Pnma 
Pnna 

(o,o,o); (o,½,½); 
(½,o,o); (½,o,½); 
(o,½,o),; (½,½,o); 
(o,o,½); (½,½,½). 

P4/m P4/nmm 
P42/m P4/ncc 
P4/n P42/mmc 
P42/n P42/mcm 

• P4/mmm P42/nbc 
P4/mcc P42/nnm 
P4/nbm P42/mbc 
P4/nnc P42/mnm 
P4/mbm P42/nmc 
P4/mnc P42/ncm 

(o,o,o); 
(o,o,½); 
(½,½,o); 
(½,½,½). 

P3 
P31m 
P31c 
P~ml 
P~cl 
P6/m 
P63/m 
P6/mmm 
P6/mcc 
P6a/mcm 
P63/mmc 

(0,0,0); 
(o,o,½). 

R~ 
R~m 
R~c 
Pm3 
Pn3 
Pa3 
Pm3m 
Pn3n 
Pm3n 
Pn3m 

(0, 0, 0); 
(½,½,½). 

Number of phases 
linearly semi-inde- 
pendent to be 
specified 

Vector hs seminvari- 
antly associated (h, k,/) (h + k,/) (l) (h + k + l) 
with h = (h, k, l) 

Seminvariant modu- 
lus (2,2,2) (2,2) (2) (2) 

Seminvariant (P. gg9; ~g,,o; ~Pggg; ~..9; 
phases ~oooo ~ooo9; ~o,,,o; ¢P=oo; ~ouuo; ~ouo,; ¢Po... 

1 1 
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(3) Equivalence classes. H - K  assemble all the per- 
missible origins defined by (1) into equivalence classes. 

In our notation, all the permissible origins corre- 
sponding to a fixed functional form of the structure 
factor constitute an equivalence class. Hence it is not 
necessary, as in the H - K  papers, to divide the space 
groups into categories according to the number of 
equivalence classes associated with each group. 

(4) Seminvariant phases, vectors and moduli: As in 
the H - K  papers, the structure seminvariants are phases 
or linear combination of phases whose value, for a 
fixed functional form of the structure factor, is inde- 
pendent of the choice of cell origin. Therefore ~. AA0h ~ 

J 
with integer Aj is a structure seminvariant if the 
condition 

Aj(hjXp)-0 (rood. 1) p = l , 2 , . . . .  (5) 
J 

is verified; Xp is a permissible translation. Equation (5) 
indeed implies that any shift between permissible 
origins changes the value of ~ Aj~0hj by an integer 

J 
multiple of 2n. It is easily verified that this definition 
of the structure seminvariant is the same as in the 
H - K  papers. 

This notation requires no modification, for primitive 
space groups, in the meanings of the seminvariant 
vector hs and the seminvariant modulus o~ (see Tables 
1, 2), as defined by H-K.  

In conventionally centred cells the systematic 
absences can be suitably associated with equation (5) 
to define h~, and os. For example, in space group I222 

equation (5) by itself defines a seminvariant vector 
h; = (h, k, l) and a seminvariant modulus co; = (2, 2, 2). 
But if we note that non-zero reflexions are character- 
ized by the condition h+k+l=-O (mod. 2), we can 
choose a seminvariant vector hs=(h,k) and a semin- 
variant modulus tOs = (2, 2). 

This procedure gives the result that the dimensions 
of seminvariant moduli are equal to the number of 
phases which have to be specified in fixing the origin. 

(5) Structure invariants: In the H - K  papers (and in 
their tables for primitive space groups), the structure 
invariants are phases or linear combinations of phases 
whose value is independent of the choice of origin 
among the permissible origins defined by (1). 

This definition is in contrast with the concept of 
structure invariant widely used in the literature, ac- 
cording to which structure invariants are phases or 
linear combination of phases, for example ~ Aj~0hj, 

J 
whose value is independent of cell origins: for example 

Ajhj = O. 
J 

In this notation the concept of structure invariant, 
as defined by H-K,  is not necessary: this simplification 
results because we do not confide a special role, as do 
Gramaccioli & Zechmeister (1972), to the operation 
'centre of symmetry'. 

(6) Symbols used in the Tables: We say that all the 
space groups which present the same permissible 
translations of the origin form a H - K  group. 

Each group can be denoted by a maximum of seven 
symbols which are: 

Table 3. Permissible translations, moduli and seminvariant phases for centrosymmetric space groups with conven- 
tional centred cells 

H-K groups (h,l)C(212) (k,l)I(2,2) (h+k+l)F(2) (/)I(2) I 

Space groups 

Permissible trans- 
lations of the 
origin 

Vector h~ semin- 
variantly associated 
with h = (h, k, l) 

Seminvariant modu- 
lus 

Seminvariant phases 

Number of phases 
linearly semi-in- 
dependent to be 
specified 

C2/m 
C2/c 
Cmcm 
Cmca 
Cmmm 
Cccm 
Cmma 
Ccca 

(o,o,o) 
(o,o,½) 
(½,o,o) 
(½,o,½) 

(h, l) 

(2, 2) 

~ogog 

Itnmm 
Ibam 
lbca 
Imma 

(o,o,o) 
(o,o,½) 
(o,½,o) 
(½,o,o) 

(k,t) 

(2, 2) 

~ggg 

2 

Fmmm 
Fddd 
Fm3 
Fd3 
Fm3m 
Fm3c 
Fd3m 
Fd 3c 

(o,o,o) 
(½,½,½) 

(h+k+l) 

(2) 

~o ogo 

14/m 
I41/a 
I4/mmm 
I4/mcm 
I41/amd 
141/acd 

(o,o,o,) 
(o,o,½) 

q) 

(2) 

~g~g ; q~ogo ; 

Im3 
Ia3 
Im3m 
Ia3d 

(o,o,o) 

(h,k,l) 

(1,1,1) 

any  
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(1) the components of the vectors hs seminvariantly 
associated with h--(h, k, l); it can be useful to preserve 
this information in the symbol of the H - K  group. 

(2) The type of the cell (P primitive, etc . . . .  ): 
following Rogers (1950, 1965), the lattice symbol is 
underlined if the point group is centrosymmetric. 

(3) The seminvariant modulus o~s. 
The meaning of the symbols (I]2H, Ilooll, . . . )  used in 

the Tables 1-4 is the same as in Karle (1970). 
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Geometric Sources of Redundancy in Intensity Data and Their Use for Phase Determination 
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Linear equations are derived in direct space, which express the relation between the electron densities of 
crystals built from the same molecule, but with different lattices or several identical subunits in their 
asymmetric units. They are shown to be equivalent to the most general 'molecular-replacement' phase 
equations in reciprocal space. The solution of these phase equations by the method of successive pro- 
jections is discussed. This algorithm, best implemented in direct space by averaging operations, is 
shown to be convergent for over-determined problems, and to be equivalent to a least-squares solution 
of the phase equations. 

Introduction 

I'he 'molecular-replacement' method has now a well 
documented literature, which has recently been collect- 
ed in a book (Rossmann, 1972). It aims at exploiting 
the redundancies of geometrical origin which may be 
present in X-ray intensity data, in order to determine 
or refine phases. Such redundancies arise if a protein 
can crystallize with several identical molecules in the 
asymmetric unit, or in several crystal forms. 

The basic equations expressing the phase constraints 
thus generated were derived by Rossmann & Blow 
(1963), Main & Rossmann (1966), and Crowther 
(1967). Their implementation was investigated by Ross- 
mann & Blow (1963, 1964), Main (1967), Crowther 
(1969) and Jack (1973). All this work was done in reci- 
procal space only, although Main (1967) aria Rossmann 
(1972) suggested that direct-space methods should be 
formally equivalent but of greater practical utility. 

In this work, a rigorous proof of this formal equiv- 
alence is presented. The equations are first written in 
direct space, using an adequate linear operator form- 
alism. A Fourier transformation then yields equations 
in reciprocal space, which are found to be the most 
general molecular-replacement equations in Crow- 

ther's linear formulation. This proves the equivalence 
in question. 

In both direct and reciprocal spaces, the equations 
express the fact that a certain vector, representing a 
set of structures built from a common subunit, is con- 
strainea to lie in the eigenspace of a certain orthogonal 
projector. In reciprocal space, this projector is repre- 
sented by a matrix. In direct space, the projection op- 
eration consists in averaging the electron densities of all 
the crystallographically independent molecules present 
in all crystals, then rebuilding each crystal from this 
averaged molecule, the density outside the molecular 
boundaries being set to a uniform background value. 
The direct-space method has considerable computa- 
tional advantages. Indeed, averaging is a simple opera- 
tion, and the molecular boundaries can easily be given 
any desired shape. 

If N subunits are thus averaged, the signal-to-noise 
ratio of the electron-density maps will increase, by a 
factor of at least I/N since we also remove noise from 
the solvent regions. Therefore, combining the experi- 
mental amplitudes with the phases recomputed from 
these averaged maps - or, equivalently, with the phases 
of the projected structure factors - may be expected to 
give improved maps. 


