tion, such as particle size, strain, dislocation density etc. (Mitra & Chattopadhyay, 1972), but as these samples are well annealed, it is evident that they are free of all these defects. Thus this change of Debye characteristic temperature must be due to a change in local ordering. Fig. 3 shows the variation of Debye characteristic temperature with the ordering as calculated from equation (5). This graph was drawn after the constant $\Theta_{AB}^2 M_{AB}$ had been calculated from the known value of $\Theta_{AB(pq)}^2 M_{AB(pq)}$ at a heat-treatment temperature of 400 °C when s can safely be taken to be zero, *i.e.* the alloy can be considered to be fully disordered. Thus, by determining the Debye characteristic temperatures of the samples quenched from different temperatures, the corresponding ordering parameter s can be found from the graph. The plot of ordering parameter s against temperature is shown in Fig. 4 from which it can be observed that the ordering decreases, as expected, with increase of temperature.

Shri A. K. Chaudhuri is indebted to the Council of Scientific and Industrial Research, New Delhi, for financial help.

References

CHIPMAN, D. R. & PASKIN, A. (1959). J. Appl. Phys. 30, 1998–2001.

Fig. 4. Variation of ordering with temperature.

- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104– 109.
- DAMASK, A. C. (1956). J. Appl. Phys. 27, 610-616.
- MITRA, G. B. & CHATTOPADHYAY, T. (1972). *Phys. Stat.* Sol. (a), 9, 89–96.
- MITRA, G. B. & CHAUDHURI, A. K. (1974). Acta Cryst. A 30, 385-387.
- MITRA, G. B. & MISRA, N. K. (1966). Brit. J. Appl. Phys. 17, 1319–1328.
- JAMES, R. W. (1962). The Optical Principles of the Diffraction of X-rays. London Bell and Sons.
- JONES, F. W. & SYKES, C. (1937). Proc. Roy. Soc. Lond. A 161, 440-446.

Acta Cryst. (1974). A30, 390

A New Scheme for Seminvariant Tables in All Space Groups

BY C. GIACOVAZZO

Istituto di Mineralogia, Università di Bari, Italy

(Received 12 January 1973; accepted 16 July 1973)

A new scheme is proposed to make the Hauptman-Karle Tables on structure seminvariants conform with international notation. An alternative derivation of the Tables for conventionally centred cells is presented.

The fundamental papers of Hauptman & Karle (1953, 1956, 1959; Karle & Hauptman, 1961) have excellently solved the problem of choosing an origin by specifying the values of an appropriate set of phases. Four tables, containing among other things the permissible origins and seminvariant moduli, have been presented in these papers; subsequently they were slightly modified (Karle, 1970).

Because of the considerable increase in the use of direct methods, these tables could be usefully issued in the new *International Tables for X-ray Crystallography*; nevertheless some modifications could be made for two reasons:

(a) to simplify their use, by a suitable notation similar to other crystallographic notations,

(b) to allow, in space groups with conventional centred cells also, the automatic search for permissible origins and seminvariant reflexions by the use of symmetry transformations (Hall, 1970; Gramaccioli & Zechmeister, 1972).

To pursue these two aims, some new definitions are necessary.

(1) *Permissible origins*: Hauptman & Karle (here H-K) define the permissible origins for primitive centrosymmetric space groups to be the eight points

$$\varepsilon_1, \varepsilon_2, \varepsilon_3; \ \varepsilon_i = 0 \text{ or } \frac{1}{2}, \ i = 1, 2, 3.$$
 (1)

For the primitive non-centrosymmetric space groups the permissible origins are defined to be those points which are equivalent to at least one of the eight points (1). The unsuitability of this definition (particularly in non-centrosymmetric groups) for practical structure determination suggests a new definition; thus:

"permissible origins are the points which, taken as origins, retain the same functional form of the structure factor. They are related each other by the 'permissible translations'".

(2) *Permissible translations*: In the primitive space groups point symmetry defines possible translations.

It is well known that in a primitive space group of order *m*, a general space-group symmetry operation

$$\mathbf{r}_{js} = \mathbf{R}_s \mathbf{r}_j + \mathbf{T}_s$$

is modified, by a origin translation X_p , to

where

$$\mathbf{r}_{js}'=\mathbf{R}_{s}'\mathbf{r}_{j}'+\mathbf{T}_{s}',$$

$$\mathbf{R}_{s}^{\prime} = \mathbf{R}_{s} \quad \mathbf{T}_{s}^{\prime} = \mathbf{T}_{s} + (\mathbf{R}_{s} - \mathbf{I})\mathbf{X}_{p}. \tag{2}$$

Hence X_p is a permissible origin translation when

$$(\mathbf{R}_s - \mathbf{I})\mathbf{X}_p = \mathbf{V}$$
 for $s = 1, 2, \dots, m$ (3)

where V is a vector with arbitrary integer components.

In centred space groups the permissible translations are not determined exclusively by the point symmetry. In the H-K (1959, 1961) papers the centred rotation matrices \mathbf{R}_c are transformed into primitive rotation matrices \mathbf{R}_p before equation (3) can be used. In these papers the primitive rotation matrices \mathbf{R}_p are tabulated for space groups with conventionally centred cells.

In contrast with the H–K derivation, the permissible translations can be specified for centred space groups without transforming them to appropriate primitive cells (this is very convenient in crystallographic computing).

Indeed, if $\mathbf{B}_{\nu} = (B_{1\nu}, B_{2\nu}, B_{2\nu})$ is a translation vector of the centred cell $[(\frac{1}{2}, \frac{1}{2}, 0)$ for C cells, $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ for I cells, *etc.*], from equations (2) and (3) we can deduce that a permissible translation \mathbf{X}_p must satisfy the equations

$$(\mathbf{R}_{s}-\mathbf{I})\mathbf{X}_{p}=\mathbf{V}+a\mathbf{B}_{v}$$
 $s=1,2,\ldots,m;$ $a=0,1.$ (4)

For example, one can verify that condition (4) is satisfied, in the space group F222, by the points

(0,0,0);	$(\frac{1}{2},\frac{1}{2},0);$	$(0,\frac{1}{2},\frac{1}{2});$	$(\frac{1}{2}, 0, \frac{1}{2});$
$(\frac{1}{4}, \frac{1}{4}, \frac{1}{4});$	$(\frac{3}{4}, \frac{3}{4}, \frac{1}{4});$	$(\frac{1}{4}, \frac{3}{4}, \frac{3}{4});$	$(\frac{3}{4}, \frac{1}{4}, \frac{3}{4});$
$(\frac{3}{4}, \frac{3}{4}, \frac{3}{4});$	$(\frac{1}{4}, \frac{1}{4}, \frac{3}{4});$	$(\frac{3}{4}, \frac{1}{4}, \frac{1}{4});$	$(\frac{1}{4}, \frac{3}{4}, \frac{1}{4});$
$(\frac{1}{2}, 0, 0);$	$(\frac{1}{2},\frac{1}{2},\frac{1}{2});$	$(0,\frac{1}{2},0);$	$(0,0,\frac{1}{2}).$

The third row of Tables 3 and 4 can be deduced directly from equation (4). We write in this row only the permissible translations not related by a combination of translation vectors: in the example of the F222 group,

$(0,0,0); (\frac{1}{2},\frac{1}{2},\frac{1}{2}); (\frac{1}{4},\frac{1}{4},\frac{1}{4}); (\frac{3}{4},\frac{3}{4},\frac{3}{4}).$

H–K groups	(h,k,l)P(2,2.2)	(h+k,l)P(2,2)	(l)P(2)	(h+k+l)P(2)
Space groups	PIPmnaP2/mPccaP2_1/mPbamP2/cPccnP2_1/cPbcmPmmmPnnmPnnnPmmnPccmPbcnPbanPbcaPmmaPnmaPnna	$\begin{array}{cccc} P4/m & P4/nmm \\ P4_2/m & P4/ncc \\ P4/n & P4_2/mmc \\ P4_2/n & P4_2/mcm \\ P4/mmm & P4_2/nbc \\ P4/mcc & P4_2/nnm \\ P4/nbm & P4_2/mbc \\ P4/nnc & P4_2/mbc \\ P4/nnc & P4_2/nmc \\ P4/mbm & P4_2/nmc \\ P4/mnc & P4_2/ncm \end{array}$	$\begin{array}{c} P\overline{3} \\ P\overline{3}1m \\ P\overline{3}1c \\ P\overline{3}m1 \\ P\overline{3}c1 \\ P\overline{6}m \\ P\overline{6}_{3}/m \\ P\overline{6}/mmm \\ P\overline{6}/mcc \\ P\overline{6}_{3}/mcm \\ P\overline{6}_{3}/mmc \end{array}$	R3 R3m R3c Pm3 Pn3 Pa3 Pm3m Pn3n Pm3n Pm3n Pn3m
Permissible trans- lations of the origin	$\begin{array}{c} (0,0,0); \ (0,\frac{1}{2},\frac{1}{2}); \\ (\frac{1}{2},0,0); \ (\frac{1}{2},0,\frac{1}{2}); \\ (0,\frac{1}{2},0); \ (\frac{1}{2},\frac{1}{2},0); \\ (0,0,\frac{1}{2}); \ (\frac{1}{2},\frac{1}{2},\frac{1}{2}). \end{array}$	$(0,0,0);(0,0,\frac{1}{2});(\frac{1}{2},\frac{1}{2},0);(\frac{1}{2},\frac{1}{2},\frac{1}{2}).$	(0,0,0); $(0,0,\frac{1}{2}).$	(0,0,0); $(\frac{1}{2},\frac{1}{2},\frac{1}{2}).$
Vector \mathbf{h}_s seminvari- antly associated with $\mathbf{h} = (h, k, l)$	(h, k, l)	(h+k,l)	(1)	(h+k+l)
Seminvariant modu- lus	(2,2,2)	(2,2)	(2)	(2)
Seminvariant phases	$arphi_{ggg}$	φ _{ggg} ; φ _{uug} ;	Фддд; Фдид; Фидд; Фиид;	φ _{ggg} ; φ _{uug} ; φ _{ugu} ; φ _{guu} .
Number of phases linearly semi-inde- pendent to be specified	3	2	1	1

Table 1. Permissible translations, moduli and seminvariant phases for the primitive centrosymmetric space groups

$ \begin{array}{c} ups \\ (h+k+l)- \\ P(0) \\ P(2) \end{array} $	(h+k+l)- $P(2)$	R32 P2 ₁ 3 P4 ₁ 32 P4 ₁ 32 P4 ₁ 32 P 4 3 <i>m</i>	(0, 0, 0) (±, ±, ±)	(<i>k</i> + <i>l</i>)	(2)	Севов; Финд; Синд; Финд	2	
	$\begin{pmatrix} h+k+l \\ P(0) \end{pmatrix}$	R3 R3m R3c	(x,x,x)	(<i>h</i> + <i>h</i>)	(0)	Фн, к.Ћ+Х	∞	-
pace gro	(l)- P(2)	P 321 P 3,21 P 3,21 P 6,22 P 7,2 P 7,2	(0,0,0) (0,0, <u>4</u>)	()	(2)	Фћкв	2	
metric s	$P_{(0)}^{(l)-}$	P31m P31c P61 P64 P64 P64 P63 P65 P655 P655 P655 P655	(0,0,z)		(0)	фико	 	
-centrosyn	P(3,2)	P312 $P3_{112}$ P5 P6c2 P6c2	$\begin{array}{c} (0,0,0)\\ (0,0,4)\\ (0,0,4)\\ (4,3,4)\\ (4,3,4)\\ (4,4,0)\\ (3,4,0)\\ (3,4,4)\\ (3,4,$	(1,	(3,2)	$\begin{array}{l}\varphi_{hkg}, \text{ if }\\h+k\equiv 0\\(\text{mod. 3})\end{array}$	$\ 2\ \text{ if } h \equiv k$ (mod. 3), $\ 3\ \text{ if } l = 0$ $l \equiv 0$ (mod. 2)	2
imitive non	$\stackrel{(h-k,l)-}{P(3,0)}$	P3 P31 P32 P3c1 P3c1	(0,0,z) $(\frac{1}{3},\frac{2}{3},z)$ $(\frac{3}{3},\frac{1}{3},z)$	(h-k)	(3,0)	$\begin{array}{l} \varphi_{hk0}, \text{ if} \\ h-k \equiv 0 \\ (\text{mod. 3}) \end{array}$	∞ , 3 if <i> </i> =0	
ises for pri	$\stackrel{(h+k,l)-}{P(2,2)}$	P4 P422 P422 P4212 P4212 P4212 P4222 P4222 P43212 P43212 P43212 P43212 P4222 P4222 P4222 P4222 P42212 P42212 P42212 P42212 P42212 P42212 P42212 P42212 P43212	$\begin{array}{c} (0,0,0)\\ (0,0,\frac{1}{2},\frac{1}{2},0)\\ (\frac{1}{2},\frac{1}{2},\frac{1}{2},0)\\ (\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2})\end{array}$	k,l)	(2,2)	606 д	2 2	
ble 2. Permissible translations, moduli and seminvariant pha $\binom{(h,k,l)-}{P(0,0,0)} \begin{bmatrix} (h,k,l)- \\ P(2,0,2) \end{bmatrix} \binom{(h,k,l)-}{P(0,2,0)} \begin{bmatrix} (h,k,l)- \\ P(2,2,0) \end{bmatrix} \binom{(h+k,l)-}{P(2,2,0)} \begin{bmatrix} (h+k,l)- \\ P(2,0) \end{bmatrix}$	$\stackrel{(h+k,l)-}{P(2,0)}$	P4 P41 P43 P43 P46m P45cm P45cm P45c P4nc P4nc P45bc	(0,0,z) $(\frac{1}{2},\frac{1}{2},z)$	+ <i>y</i>)	(2,0)	Ф _{вд} о Фиио	∞ , 2 if <i> </i> =0	
	P(2,2,0)	Pmm2 Pmc21 Pcc2 Pca21 Pm22 Pm21 Pm21 Pm2 Pm2	$\begin{array}{c} (0,0,z)\\ (0,\frac{1}{2},z)\\ (\frac{1}{2},0,z)\\ (\frac{1}{2},\frac{1}{2},z) \end{array}$		(2, 2, 0)	0 ⁸⁶ Ø	∞ , 2 if /=0	
	P222 P2121 P212121 P212121	$\begin{array}{c} (0,0,0)\\ (4,0,0)\\ (4,0,0)\\ (0,4,0)\\ (0,4,1)\\ (0,4,4)\\ (4,4,0)\\ (4,4,0)\\ (4,4,0)\\ (4,4,0)\\ (4,4,4)\\ (4,4)$		(2,2,2)	608	2 2		
	Pm Pc	(x, 0, z) $(x, \frac{1}{2}, z)$	(<i>h</i> , <i>k</i> , <i>l</i>)	(0,2,0)	\$0 ⁹⁰	$\ \infty\ ,$ $\ 2\ \text{ if } h=l=0$	3	
	P2 P2	$\begin{array}{c} (0,y,0) \\ (0,y,4) \\ (4,y,0) \\ (4,y,4) \\ (4,y,4) \end{array}$		(2,0,2)	ϕ_{g0g}	$\ \infty\ ,$ $\ 2\ $ if $k=0$		
	14	(x,y,z)		(0,0,0)	\$000	8		
Та	H-K groups	Space groups	Permissible translations of the origin	Vector \mathbf{h}_s seminvari- antly associated with $\mathbf{h} = (h, k, l)$	Seminvariant modulus	Seminvariant phases	Permissible variations for semi-independent phases	Number of phases linearly semi-indepen- dent to be specified

392

A NEW SCHEME FOR SEMINVARIANT TABLES

(3) Equivalence classes. H-K assemble all the permissible origins defined by (1) into equivalence classes.

In our notation, all the permissible origins corresponding to a fixed functional form of the structure factor constitute an equivalence class. Hence it is not necessary, as in the H–K papers, to divide the space groups into categories according to the number of equivalence classes associated with each group.

(4) Seminvariant phases, vectors and moduli: As in the H-K papers, the structure seminvariants are phases or linear combination of phases whose value, for a fixed functional form of the structure factor, is independent of the choice of cell origin. Therefore $\sum_{i} A_{j} \varphi_{nj}$

with integer A_j is a structure seminvariant if the condition

$$\sum_{j} A_{j}(\mathbf{h}_{j}\mathbf{X}_{p}) \equiv 0 \pmod{1} \quad p = 1, 2, \dots$$
 (5)

is verified; \mathbf{X}_p is a permissible translation. Equation (5) indeed implies that any shift between permissible origins changes the value of $\sum_{j} A_j \varphi_{\mathbf{h}j}$ by an integer multiple of 2π . It is easily verified that this definition of the structure seminvariant is the same as in the H-K papers.

This notation requires no modification, for primitive space groups, in the meanings of the seminvariant vector \mathbf{h}_s and the seminvariant modulus $\boldsymbol{\omega}_s$ (see Tables 1, 2), as defined by H-K.

In conventionally centred cells the systematic absences can be suitably associated with equation (5) to define h_{s} , and ω_{s} . For example, in space group *I*222

equation (5) by itself defines a seminvariant vector $\mathbf{h}'_s = (h, k, l)$ and a seminvariant modulus $\omega'_s = (2, 2, 2)$. But if we note that non-zero reflexions are characterized by the condition $h+k+l\equiv 0 \pmod{2}$, we can choose a seminvariant vector $\mathbf{h}_s = (h, k)$ and a seminvariant modulus $\omega_s = (2, 2)$.

This procedure gives the result that the dimensions of seminvariant moduli are equal to the number of phases which have to be specified in fixing the origin.

(5) Structure invariants: In the H-K papers (and in their tables for primitive space groups), the structure invariants are phases or linear combinations of phases whose value is independent of the choice of origin among the permissible origins defined by (1).

This definition is in contrast with the concept of structure invariant widely used in the literature, according to which structure invariants are phases or linear combination of phases, for example $\sum_{j} A_{j}\varphi_{\mathbf{h}j}$, whose value is independent of cell origins: for example $\sum_{j} A_{j}\mathbf{h}_{j} = 0$.

In this notation the concept of structure invariant, as defined by H–K, is not necessary: this simplification results because we do not confide a special role, as do Gramaccioli & Zechmeister (1972), to the operation 'centre of symmetry'.

(6) Symbols used in the Tables: We say that all the space groups which present the same permissible translations of the origin form a H-K group.

Each group can be denoted by a maximum of seven symbols which are:

 Table 3. Permissible translations, moduli and seminvariant phases for centrosymmetric space groups with conventional centred cells

H-K groups	(h, l)C(2, 2)	(k,l)I(2,2)	(h+k+l)F(2)	(<i>l</i>) <u>I</u> (2)	<u></u>
Space groups	C2/m C2/c Cmcm Cmca Cmmm Cccm Cmma Ccca	Immm Ibam Ibca Imma	Fmmm Fddd Fm3 Fd3 Fm3m Fm3c Fd3m Fd3c	14/m 14 ₁ /a 14/mmm 14/mcm 14 ₁ /amd 14 ₁ /acd	Im3 Ia3 Im3m Ia3d
Permissible trans- lations of the origin	$(0,0,0)(0,0,\frac{1}{2})(\frac{1}{2},0,0)(\frac{1}{2},0,\frac{1}{2})$	$(0,0,0)(0,0,\frac{1}{2})(0,\frac{1}{2},0)(\frac{1}{2},0,0)$	$(0,0,0) \\ (\frac{1}{2},\frac{1}{2},\frac{1}{2})$	(0,0,0,) $(0,0,\frac{1}{2})$	(0,0,0)
Vector \mathbf{h}_s semin- variantly associated with $\mathbf{h} = (h, k, l)$	(<i>h</i> , <i>l</i>)	(k,l)	(h+k+l)	(<i>l</i>)	(h,k,l)
Seminvariant modu- lus	(2,2)	(2,2)	(2)	(2)	(1,1,1)
Seminvariant phases	<i>Qada</i>	φ_{ggg}	$arphi_{ggg}$	Ф _{дид} ; Ф _{ддд} ; Фиид; Фидд;	апу <i>Ф</i> ькі
Number of phases linearly semi-in- dependent to be specified	2	2 	1	, ,	0

ls	-	123 12 ₁ 3 1432 14 ₁ 32 14 ₁ 32 143 <i>m</i>	(0,0,0)	(h, k, l)	(1,1,1)	any Øhki	any Ø _{ħk1}	0
ıtred cel	$F_{(0)}^{(l)}$	Fmm2 Fdd2	(0,0, <i>z</i>)	()	(0)	фнко	<u>*</u>	
ventional cer	$\frac{(2k-l)}{I(4)}$	14 74m2 14c2 142m 142d	(0,0,0) (4,0,4) (4,0,4) (4,0,2)	(2k-l)	(4)	$\varphi_{hkl}, \text{ if } \\ (2k-l) \equiv 0 \\ (\text{mod. 4})$	$\ 2\ \text{ if } \\ 2k - l \equiv 0 \\ (\text{mod. 2}), \\ \ 4\ \text{ if } \\ 2k - l \equiv 1 \\ (\text{mod. 2}) \\ (\text{mod. 2}) \\ \end{bmatrix}$	
with com	I(2)	1422 14 ₁ 22	(0,0,0) $(0,0,\frac{1}{2})$	9	(3)	Фћкд	12	
sdnoıß ə:	-()) I(0)I	14 141 14m 14m 14cm 141md 141cd	(0, 0, z)		0	фкно	<u>8</u>	
mmetric spac	$\frac{(h+k+l)}{F(4)}$	F222 F23 F43m F43c	$\begin{pmatrix} (0,0,0)\\ (4,4,4)\\ (4,4,4)\\ (4,4,4)\\ (4,4,4)\\ (4,4,4)\\ (4,4,4) \end{pmatrix}$	+k+l)	(4)	$\varphi_{hkl}, \text{ if } \\ h+k+l \equiv 0 \\ (\text{mod. 4})$	$\ 2\ \text{ if } h+k+l \equiv 0$ (mod. 2), (4 if $h+k+l \equiv 1$ (mod. 2)	
n-centrosy	$\frac{(h+k+l)}{F(2)}$	F432 F4 ₁ 32	(0,0,0) $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$	+ 4)	(2)	665 Ø	2 2	•
es for no	(h, l)- I(2, 2)	1222 12,2,2,	(0,0,0) $(0,0,\frac{1}{2})$ $(0,\frac{1}{2},0)$ $(\frac{1}{2},0,0)$		(2,2)	qaaa	12 11	
ant phase	I(2,0) I(2,0)	Imm2 Iba2 Ima2	$(0,0,z) ({1\over 2},0,z)$		(2,0)	(<i>p</i> _{gg_0}	∞ , 2 if <i>l</i> =0	•
seminvari	$\stackrel{(h,l)-}{A(2,0)}$	Amm2 Abm2 Ama2 Aba2 Aba2	(0,0,z) $(\frac{1}{2},0,z)$. (4,1)	(2,0)	(\$\$60	∞ , 2 if <i>l</i> =0	
duli and 2	C(2,2)	C 222 C 222 ₁	(0,0,0) $(0,0,\frac{1}{2})$ $(\frac{1}{2},0,0)$ $(\frac{1}{2},0,\frac{1}{2})$		(2,2)	(y 698	2	
e translations, moo	(h, l)- C(2, 0)	Cmm2 Cmc21 Ccc2	$(0,0,z) (rac{1}{2},0,z)$		(2,0)	\$ 990	∞ , 2 if <i>I</i> =0	
	$\begin{array}{c} (h,l) \\ C(0,0) \end{array}$	Cm Cc	(x, 0, z)		(0,0)	\$0g0	<u></u>	
ermissibl	C(0,2)	C2	(0, y, 0) $(0, y, \frac{1}{2})$	(k, l)	(0, 2)	\$00	$\ \infty\ , \ 2\ , \ 2\ , k=0$	
Table 4. P.	H-K groups	Space groups	Permissible translations of the origin	Vector \mathbf{h}_s seminvari- antly associated with $\mathbf{h} = (h, k, l)$	Seminvariant modulus	Seminvariant phases	Permissible variations for semi-inde- pendent phases	Number of phases lin. semi-indepen- dent to be specified

(1) the components of the vectors \mathbf{h}_s seminvariantly associated with $\mathbf{h} = (h, k, l)$; it can be useful to preserve this information in the symbol of the H-K group.

(2) The type of the cell (P primitive, etc. ...): following Rogers (1950, 1965), the lattice symbol is underlined if the point group is centrosymmetric.

(3) The seminvariant modulus ω_s .

The meaning of the symbols $(||2||, ||\infty||, ...)$ used in the Tables 1–4 is the same as in Karle (1970).

References

GRAMACCIOLI, C. M. & ZECHMEISTER, K. (1972). Acta Cryst. A28, 154-158.

- HALL, S. R. (1970). Symmetry Considerations in the Application of the Structure Invariants. Nato Advanced Study Institute on Direct and Patterson Methods. Parma. Italy.
- HAUPTMAN, H. & KARLE, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. A.C.A. Monograph No. 3. Pittsburgh: Polycrystal Book Service.

HAUPTMAN, H. & KARLE, J. (1956). Acta Cryst. 9, 45-55.

- HAUPTMAN, H. & KARLE, J. (1959). Acta Cryst. 12, 93-97. KARLE, J. (1970). In Crystallographic Computing. Edited
- by F. R. AHMED. Copenhagen: Munksgaard.

KARLE, J. & HAUPTMAN, H. (1961). Acta Cryst. 14, 217-223. Rogers, D. (1950). Acta Cryst. 3, 455-464.

- ROGERS, D. (1965). In Computing Methods in Crystallography. Edited by J. S. ROLLETT. London: Pergamon Press.

Acta Cryst. (1974). A 30, 395

Geometric Sources of Redundancy in Intensity Data and Their Use for Phase Determination

BY G. BRICOGNE

MRC Laboratory of Molecular Biology, Cambridge, England

(Received 14 November 1973; accepted 14 January 1974)

Linear equations are derived in direct space, which express the relation between the electron densities of crystals built from the same molecule, but with different lattices or several identical subunits in their asymmetric units. They are shown to be equivalent to the most general 'molecular-replacement' phase equations in reciprocal space. The solution of these phase equations by the method of successive projections is discussed. This algorithm, best implemented in direct space by averaging operations, is shown to be convergent for over-determined problems, and to be equivalent to a least-squares solution of the phase equations.

Introduction

The 'molecular-replacement' method has now a well documented literature, which has recently been collected in a book (Rossmann, 1972). It aims at exploiting the redundancies of geometrical origin which may be present in X-ray intensity data, in order to determine or refine phases. Such redundancies arise if a protein can crystallize with several identical molecules in the asymmetric unit, or in several crystal forms.

The basic equations expressing the phase constraints thus generated were derived by Rossmann & Blow (1963), Main & Rossmann (1966), and Crowther (1967). Their implementation was investigated by Rossmann & Blow (1963, 1964), Main (1967), Crowther (1969) and Jack (1973). All this work was done in reciprocal space only, although Main (1967) and Rossmann (1972) suggested that direct-space methods should be formally equivalent but of greater practical utility.

In this work, a rigorous proof of this formal equivalence is presented. The equations are first written in direct space, using an adequate linear operator formalism. A Fourier transformation then yields equations in reciprocal space, which are found to be the most general molecular-replacement equations in Crow-

ther's linear formulation. This proves the equivalence in question.

In both direct and reciprocal spaces, the equations express the fact that a certain vector, representing a set of structures built from a common subunit, is constrained to lie in the eigenspace of a certain orthogonal projector. In reciprocal space, this projector is represented by a matrix. In direct space, the projection operation consists in averaging the electron densities of all the crystallographically independent molecules present in all crystals, then rebuilding each crystal from this averaged molecule, the density outside the molecular boundaries being set to a uniform background value. The direct-space method has considerable computational advantages. Indeed, averaging is a simple operation, and the molecular boundaries can easily be given any desired shape.

If N subunits are thus averaged, the signal-to-noise ratio of the electron-density maps will increase, by a factor of at least γN since we also remove noise from the solvent regions. Therefore, combining the experimental amplitudes with the phases recomputed from these averaged maps – or, equivalently, with the phases of the projected structure factors – may be expected to give improved maps.