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tion, such as particle size, strain, dislocation density
etc. (Mitra & Chattopadhyay, 1972), but as these
samples are well annealed, it is evident that they are
free of all these defects. Thus this change of Debye
characteristic temperature must be due to a change in
local ordering. Fig. 3 shows the variation of Debye
characteristic temperature with the ordering as cal-
culated from equation (5). This graph was drawn after
the constant ©4;M ,; had been calculated from the
known value of @%g,HMippg at a heat-treatment
temperature of 400°C when s can safely be taken to
be zero, i.e. the alloy can be considered to be fully
disordered. Thus, by determining the Debye charac-
teristic temperatures of the samples quenched from
different temperatures, the corresponding ordering par-
ameter s can be found from the graph. The plot of
ordering parameter s against temperature is shown in
Fig. 4 from which it can be observed that the ordering
decreases, as expected, with increase of temperature.

Shri A. K. Chaudhuri is indebted to the Council of
Scientific and Industrial Research, New Delhi, for
financial help.
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A New Scheme for Seminvariant Tables in All Space Groups

By C.Giacovazzo

Istituto di Mineralogia, Universita di Bari, Italy
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A new scheme is proposed to make the Hauptman-Karle Tables on structure seminvariants conform
with international notation. An alternative derivation of the Tables for conventionally centred cells

is presented.

The fundamental papers of Hauptman & Karle (1953,
1956, 1959; Karle & Hauptman, 1961) have excellently
solved the problem of choosing an origin by specifying
the values of an appropriate set of phases. Four
tables, containing among other things the permissible
origins and seminvariant moduli, have been presented
in these papers; subsequently they were slightly modi-
fied (Karle, 1970).

Because of the considerable increase in the use of
direct methods, these tables could be usefully issued in
the new International Tables for X-ray Crystallography;
nevertheless some modifications could be made for two
reasons:

(@) to simplify their use, by a suitable notation
similar to other crystallographic notations, .

(b) to allow, in space groups with conventional
centred cells also, the automatic search for permissible
origins and seminvariant reflexions by the use of
symmetry transformations (Hall, 1970; Gramaccioli &
Zechmeister, 1972).

To pursue these two aims, some new definitions are
necessary.

(1) Permissible origins: Hauptman & Karle (here
H-K) define the permissible origins for primitive
centrosymmetric space groups to be the eight points

&, 65,835 =0o0r %, i=1,2,3. 1))

For the primitive non-centrosymmetric space groups
the permissible origins are defined to be those points
which are equivalent to at least one of the eight points
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(1). The unsuitability of this definition (particularly in

non-centrosymmetric groups) for practical structure

determination suggests a new definition; thus:
“permissible origins are the points which, taken as
origins, retain the same functional form of the
structure factor. They are related each other by the

’ 9

‘permissible translations’ .

(2) Permissible translations: In the primitive space
groups point symmetry defines possible translations.

It is well known that in a primitive space group of
order m, a general space-group symmetry operation

=Ry, + T,
is modified, by a origin translation X,, to
r;;=Rr;+T,,
where
Hence X, is a permissible origin translation when
R;—-DX,=V for s=1,2,...,m 3)

where V is a vector with arbitrary integer components.

In centred space groups the permissible translations
are not determined exclusively by the point symmetry.
In the H-K (1959, 1961) papers the centred rotation
matrices R, are transformed into primitive rotation
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matrices R, before equation (3) can be used. In these
papers the primitive rotation matrices R, are tabulated
for space groups with conventionally centred cells.

In contrast with the H-K derivation, the permissible
translations can be specified for centred space groups
without transforming them to appropriate primitive
cells (this is very convenient in crystallographic com-
puting).

Indeed, if B,=(B,,,B,,,B,,) is a translation vector
of the centred cell [(4,3,0) for C cells, (1,4,4) for I
cells, etc.], from equations (2) and (3) we can deduce
that a permissible translation X, must satisfy the equa-
tions

R,—DX,=V+aB, s=1,2,...,m; a=0,1. (4

For example, one can verify that condition (4) is satis-
fied, in the space group F222, by the points

(0,0,0); (3,3,0); (0,%,%); (4,0,%);

431 G331 G131 (13

@33 G131 G Ghi.d);

(,0,0); (3,%,3); (0,3,0); (0,0,%).
The third row of Tables 3 and 4 can be deduced directly
from equation (4). We write in this row only the per-
missible translations not related by a combination of
translation vectors: in the example of the F222 group,

0,0,0); (:%.9); G.+d; G4.9).

Table 1. Permissible transiations, moduli and seminvariant phases for the primitive centrosymmetric space groups

H-K groups (B, k,)P(2,2.2) (h+k,)P(2,2) (OPQ) (h+k+DPQ2)
Space groups PT Pmna Palm Pd/nmm P3 R3

P2/m Pcca P4,/m Pd/ncc P31m R3m
P2,/m  Pbam Pd/n P4;/mme P3lc R3c
P2/c Pcen Pd,/n P4,/mem P3ml Pm3
P2,/c Pbem - P4lmmm  P4,/nbc P3cl Pn3
Pmmm  Pnam P4/mcc P4,/nnm P6/m Pa3
Pnnn Pmmn P4/nbm P4,/mbe P6s/m Pm3m
Pcem Pbcn Pd[nnc P4,/mnm P6/mmm Pn3n
Pban Pbca P4/mbm P4,/nme P6/mce Pm3n
Pmma Pnma Pd/mnc P4,/nem P6s3/mem Pn3m
Pnna P63/mmc

Permissible trans- (0,0,0); (0,%,%); (0,0,0);

lations of the (3,0,0); (3,0,%); 0,0,%); 0,0,0); (0,0,0);

origin 0,%,0); (3,3,0); (3,4,0); 0,0,%). %49
0,0,1); (3,41 3:4,%).

Vector h, seminvari-

antly associated (h,k,D) (h+k,0D) 0) (h+k+D

with h=(#,&,/)

lSl;esrmnvarla.nt modu- 2,2,2) ©,2) @ @

Seminvariant Paags Poug’ Paggs Puugs

phases Dagg Pagas Puugs Puggs Puugs Pugus Pauue

Number of phases

linearly semi-inde- 3 2 1 1

pendent to be

specified
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(3) Equivalence classes. H-K assemble all the per-
missible origins defined by (1) into equivalence classes.

In our notation, all the permissible origins corre-
sponding to a fixed functional form of the structure
factor constitute an equivalence class. Hence it is not
necessary, as in the H-K papers, to divide the space
groups into categories according to the number of
equivalence classes associated with each group.

(4) Seminvariant phases, vectors and moduli: As in
the H-K papers, the structure seminvariants are phases
or linear combination of phases whose value, for a
fixed functional form of the structure factor, is inde-
pendent of the choice of cell origin. Therefore 2, A pn;

7

with integer A4; is a structure seminvariant if the
condition

S A4,0,X,)=0(mod. 1) p=1,2,.... (5
J

is verified; X, is a permissible translation. Equation (5)
indeed implies that any shift between permissible
origins changes the value of > A4;p,; by an integer

multiple of 2z. It is easily verified that this definition
of the structure seminvariant is the same as in the
H-K papers.

This notation requires no modification, for primitive
space groups, in the meanings of the seminvariant
vector h, and the seminvariant modulus @, (see Tables
1, 2), as defined by H-K.

In conventionally centred cells the systematic
absences can be suitably associated with equation (5)
to define h;, and w,. For example, in space group 1222
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equation (5) by itself defines a seminvariant vector
h,=(h,k,/) and a seminvariant modulus ®;=(2,2,2).
But if we note that non-zero reflexions are character-
ized by the condition h+k+/=0 (mod. 2), we can
choose a seminvariant vector hy=(h,k) and a semin-
variant modulus o,=(2,2).

This procedure gives the result that the dimensions
of seminvariant moduli are equal to the number of
phases which have to be specified in fixing the origin.

(5) Structure invariants: In the H-K papers (and in
their tables for primitive space groups), the structure
invariants are phases or linear combinations of phases
whose value is independent of the choice of origin
among the permissible origins defined by (1).

This definition is in contrast with the concept of
structure invariant widely used in the literature, ac-
cording to which structure invariants are phases or
linear combination of phases, for example > A;pn;,

J

whose value is independent of cell origins: for example
Z Ajhj = 0

J

In this notation the concept of structure invariant,
as defined by H-K, is not necessary: this simplification
results because we do not confide a special role, as do
Gramaccioli & Zechmeister (1972), to the operation
‘centre of symmetry’.

(6) Symbuols used in the Tables: We say that all the
space groups which present the same permissible
translations of the origin form a H-K group.

Each group can be denoted by a maximum of seven
symbols which are:

Table 3. Permissible translations, moduli and seminvariant phases for centrosymmetric space groups with conven-
tional centred cells

H-K groups (h,l)£(2, 2) (k,l)£(2, 2) (h+k+1)f(2) (1)5(2) I
Space groups C2/m Immm Fmmm I4/m Im3
C2/c Ibam Fddd 14/a Ia3
Cmem Ibca Fm3 14/mmm Im3m
Cmca Imma Fd3 I14/mcm Ia3d
Cmmm Fm3m 14,/amd
Ceem Fm3c 14,/acd
Cmma Fd3m
Ccca Fd3c
Permissible trans- (0,0,0) 0,0,0)
lations of the 0,0,1) (0,0,%) (0,0,0) (0,0,0,) 0,0,0)
origin (3,0,0) 0,%,0) &5 0,0,%)
4,0,%) (3,0,0)
Vector hs semin-
variantly associated (X)) ()] (h+k+1) o) (h,k,0)
with h=(h,k,[)
Seminvariant modu-
lus (2,2) (2,2) )] 2 (1,1,1)
Seminvariant phases Vggg Pgaq Dgg9g Pgug’s Pgggs any
Puugs Pugg> Phkt
Number of phases
linearly semi-in- 2
dependent to be - 1 0
specified - . <
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(1) the components of the vectors h, seminvariantly
associated with h=(h,k,/); it can be useful to preserve
this information in the symbol of the H-K group.

(2) The type of the cell (P primitive, etc. ...):
following Rogers (1950, 1965), the lattice symbol is
underlined if the point group is centrosymmetric.

(3) The seminvariant modulus ;.

The meaning of the symbols (j|2]l, |looll, ...) used in
the Tables 1-4 is the same as in Karle (1970).
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Geometric Sources of Redundancy in Intensity Data and Their Use for Phase Determination

BY G. BRICOGNE
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Linear equations are derived in direct space, which express the relation between the electron densities of
crystals built from the same molecule, but with different lattices or several identical subunits in their
asymmetric units. They are shown to be equivalent to the most general ‘molecular-replacement’ phase
equations in reciprocal space. The solution of these phase equations by the method of successive pro-
jections is discussed. This algorithm, best implemented in direct space by averaging operations, is
shown to be convergent for over-determined problems, and to be equivalent to a least-squares solution

of the phase equations.

Introduction

T'he ‘molecular-replacement’ method has now a well
documented literature, which has recently been collect-
ed in a book (Rossmann, 1972). It aims at exploiting
the redundancies of geometrical origin which may be
present in X-ray intensity data, in order to determine
or refine phases. Such redundancies arise if a protein
can crystallize with several identical molecules in the
asymmetric unit, or in several crystal forms.

The basic equations expressing the phase constraints
thus generated were derived by Rossmann & Blow
(1963), Main & Rossmann (1966), and Crowther
(1967). Their implementation was investigated by Ross-
mann & Blow (1963, 1964), Main (1967), Crowther
(1969) and Jack (1973). All this work was done in reci-
procal space only, although Main (1967) ana Rossmann
(1972) suggested that direct-space methods should be
formally equivalent but of greater practical utility.

In this work, a rigorous proof of this formal equiv-
alence is presented. The equations are first written in
direct space, using an adequate linear operator form-
alism. A Fourier transformation then yields equations
in reciprocal space, which are found to be the most
general molecular-replacement equations in Crow-

ther’s linear formulation. This proves the equivalence
in question.

In both direct and reciprocal spaces, the equations
express the fact that a certain vector, representing a
set of structures built from a common subunit, is con-
strained to lie in the eigenspace of a certain orthogonal
projector. In reciprocal space, this projector is repre-
sented by a matrix. In direct space, the projection op-
eration consists in averaging the electron densities of all
the crystallographically independent molecules present
in all crystals, then rebuilding each crystal from this
averaged molecule, the density outside the molecular
boundaries being set to a uniform background value.
The direct-space method has considerable computa-
tional advantages. Indeed, averaging is a simple opera-
tion, and the molecular boundaries can easily be given
any desired shape.

If N subunits are thus averaged, the signal-to-noise
ratio of the electron-density maps will increase, by a
factor of at least YN since we also remove noise from
the solvent regions. Therefore, combining the experi-
mental amplitudes with the phases recomputed from
these averaged maps — or, equivalently, with the phases
of the projected structure factors — may be expected to
give improved maps.



